
Spatial Index Keyword Search in Multi
dimensional Database

1C. Usha Rani , 2N.Munisankar

 1 Assistant Professor, Department of CSE, Annamacharya Institute of Technology and Sciences,
JNTUA, Tirupati, Chittor, Andhra Pradesh, India

2 Assistant professor , Department of CSE, Sri venaktesaperumal College of Engineering and Technology ,
JNTUA, Puttor , Chittor, Andhra Pradesh, India

Abstract: - An efficient algorithm for spatial databases,
various approaches are delivered by the various researchers
for finding the result based on the keywords, and usually
spatial query is a combination of a location and set of features.
in this paper, has a few deficiencies that seriously impact its
efficiency. Motivated by this, we develop a new access method
called the spatial inverted index that extends the conventional
inverted index to cope with multidimensional data, and comes
with algorithms that can answer nearest neighbor queries
with keywords in real time. As verified by experiments, the
proposed techniques outperform the IR2-tree in query
response time significantly, often by a factor of orders of
magnitude. Spatial databases are mainly focus on multi
dimensional database. In our approach we are handling the
spatial queries jointly and returns the only user specified
number of optimal results, we implemented a cache based
approach for efficient results.

Index Terms: —Nearest Neighbor Search, Keyword Search,
and Spatial Index.

1. INTRODUCTION
 The World-Wide Web has reached a size where it is
becoming increasingly challenging to satisfy certain
information needs. While search engines are still able to
index a reasonable subset of the (surface) web, the pages a
user is really looking for are often buried under hundreds of
thousands of less interesting results. Thus, search engine
users are in danger of drowning in information. Adding
additional terms to standard keyword searches often fails to
narrow down results in the desired direction. A natural
approach is to add advanced features that allow users to
express other constraints or preferences in an intuitive
manner, resulting in the desired documents to be returned
among the first results. In fact, search engines have added a
variety of such features, often under a special advanced
search interface, but mostly limited to fairly simple
conditions on domain, link structure, or modification date.
 A spatial keyword query consists of a query area and a
set of keywords shown in below figure. The answer is a list
of objects ranked according to a combination of their
distance to the query area and the relevance of their text
description to the query keywords. A simple yet popular
variant, which is used in our running example, is the
distance-first spatial keyword query, where objects are
ranked by distance and keywords are applied as a
conjunctive filter to eliminate objects that do not contain
them.

 Unfortunately there is no efficient support for top-k
spatial keyword queries, where a prefix of the results list is
required. Instead, current systems use ad-hoc combinations
of nearest neighbor (NN) and keyword search techniques to
tackle the problem. For instance, an R-Tree is used to find
the nearest neighbors and for each neighbor an inverted
index is used to check if the query keywords are contained.
We show that such two-phase approaches are inefficient.
 Today, the widespread use of search engines has made
it realistic to write spatial queries in a brand new way.
Conventionally, queries focus on objects’ geometric
properties only, such as whether a point is in a rectangle, or
how close two points are from each other. We have seen
some modern applications that call for the ability to select
objects based on both of their geometric coordinates and
their associated texts. For example, it would be fairly useful
if a search engine can be used to find the nearest restaurant
that offers “steak, spaghetti, and brandy” all at the same
time. Note that this is not the “globally” nearest restaurant
(which would have been returned by a traditional nearest
neighbor query), but the nearest restaurant among only
those providing allthe demanded foods and drinks.

2. RELATED WORK
 Inverted indexes (I-index) have proved to be an
effective access method for keyword-based document
retrieval. In the spatial context, nothing prevents us from
treating the text description Wp of a point p as a document,
and then, building an I-index. Note that the list of each
word maintains a sorted order of point ids, which provides
considerable convenience in query processing by allowing
an efficient merge step. For example, assume that we want
to find the points that have words c and d. This is
essentially to compute the intersection of the two words’
inverted lists. As both lists are sorted in the same order, we
can do so by merging them, whose I/O and CPU times are
both linear to the total length of the lists.

3. PROBLEM DEFINITION
 Let P be a set of multidimensional points. As our goal
is to combine keyword search with the existing location-
finding services on facilities such as hospitals, restaurants,
hotels, etc., we will focus on dimensionality 2, but our
technique can be extended to arbitrary dimensionalities
with no technical obstacle. We will assume that the points
in P have integer coordinates, such that each coordinate
ranges in [0, t], where t is a large integer. This is not as

C. Usha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6468-6471

www.ijcsit.com 6468

restrictive as it may seem, because even if one would like
to insist on real-valued coordinates, the set of different
coordinates represent able under a space limit is still finite
and enumerable; therefore, we could as well convert
everything to integers with proper scaling.

Fig.1. (a) shows the locations of points (b) gives their

associated texts.

4. ALGORITHMS USED
Spatial inverted index Algorithm:

Input: Query, Cache Queries
Output: Result set generated for query
Procedure:
If Query available in cache
Result related to query: =
ForwardToTreeprocess (Query)
Else
Result related to query: = GeocodingtreeProcess
(Query)
Geocoding process(Query):
Parameters

Qi—Input Spatial Query
Qj (j=1…n) ---Set of Queries contains same Location
Dist[j] (j=1…..n)-----Array for set of distances
Procedure:
(xi,yi)---Geocodings of Qi
(xj,yj)--- Geocodings of all queries with respect to location
Dist[i]=Euclidean distance between the geocodes
While not leafnode
Read nodes from tree For Q.features
If Q.features[i]==Q.features[j]

Add to list
End while
Sort list by feature and distance
Return list.

ForwardToTreeprocess ()

1. Build an empty list
2 .Make a root node
3. if Qi in cache and status=false
 For j=0 to n
 Compare features(Qi,Qj) status=true;
 For Each child in tree
 If(status==true)
 Getnodebyfeature (Qi);
 Getnodebyfeature (Qj);
 End
 Else
 Empty list ()
 End For Each
4.Add nodes to list
5.Return list

Inverted index:
 Inverted indexes (I-index) have proved to be an
effective access method for keyword-based document
retrieval. In the spatial context, nothing prevents us from
treating the text description Wp of a point p as a document,
and then, building an I-index. Figure 4 illustrates the index
for the dataset of Figure 1. Each word in the vocabulary has
an inverted list, enumerating the ids of the points that have
the word in their documents.
 Note that the list of each word maintains a sorted order
of point ids, which provides considerable convenience in
query processing by allowing an efficient merge step. For
example, assume that we want to find the points that have
words c and d. This is essentially to compute the
intersection of the two words’ inverted lists. As both lists
are sorted in the same order, we can do so by merging
them, whose I/O and CPU times are both linear to the total
length of the lists.
 Recall that, in NN processing with IR2-tree, a point
retrieved from the index must be verified (i.e., having its
text description loaded and checked). Verification is also
necessary with I-index, but for exactly the opposite reason.
For IR2-tree, verification is because we do not have the
detailed texts of a point, while for I-index, it is because we
do not have the coordinates. Specifically, given an NN
query q with keyword set Wq, the query algorithm of I-
index first retrieves (by merging) the set Pq of all points
that have all the keywords of Wq, and then, performs |Pq|
random I/Os to get the coordinates of each point in Pq in
order to evaluate its distance to q.
 According to the experiments, when Wq has only a
single word, the performance of I-index is very bad, which
is expected because everything in the inverted list of that
word must be verified. Interestingly, as the size of Wq
increases, the performance gap between Iindex and IR2-
tree keeps narrowing such that I-index even starts to
outperform IR2-tree at |Wq| = 4. This is not as surprising as

C. Usha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6468-6471

www.ijcsit.com 6469

it may seem. As |Wq| grows large, not many objects need to
be verified because the number of objects carrying all the
query keywords drops rapidly.
 On the other hand, at this point an advantage of Iindex
starts to pay off. That is, scanning an inverted list is
relatively cheap because it involves only sequential I/Os1,
as opposed to the random nature of accessing the nodes of
an IR2-tree.
Given the texts

T [0] = "it is what it is"
T [1] = "what is it"
T [2] = "it is a banana"
 We have the following inverted file index (where the
integers in the set notation brackets refer to the indexes (or
keys) of the text symbols, T[0], T[1] etc.):
"a" : {2}
"banana" : {2}
"is" : {0, 1, 2}
"it" : {0, 1, 2}
"what" : {0, 1}
 A term search for the terms "what", "is" and "it" would
give the set
{0, 1} ∩ {0, 1, 2} ∩ {0, 1, 2} = {0, 1}
 With the same texts, we get the following full inverted
index, where the pairs are document numbers and local
word numbers. Like the document numbers, local word
numbers also begin with zero. So, "banana": {(2, 3)} means
the word "banana" is in the third document (T[2]), and it is
the fourth word in that document (position 3).
"a" : {(2, 2)}
"banana" : {(2, 3)}
"is" : {(0, 1), (0, 4), (1, 1), (2, 1)}
"it" : {(0, 0), (0, 3), (1, 2), (2, 0)}
"what" : {(0, 2), (1, 0)}
 If we run a phrase search for "what is it" we get hits for
all the words in both document 0 and 1. But the terms occur
consecutively only in document 1.

Fig. 2. Example of an inverted index

 Signature file in general refers to a hashing-based
framework, whose instantiation is known as superimposed
coding (SC), which is shown to be more effective than
other instantiations. It is designed to perform membership
tests: determine whether a query word w exists in a set W
of words. SC is conservative, in the sense that if it says
“no”, then w is definitely not in W. If, on the other hand,
SC returns “yes”, the true answer can be either way, in
which case the whole W must be scanned to avoid a false

hit. In the context, SC works in the same way as the classic
technique of bloom filter. In preprocessing, it builds a bit
signature of length l from W by hashing each word in W to
a string of l bits, and then taking the disjunction of all bit
strings. To illustrate, denote by h(w) the bit string of a word
w. First, all the l bits of h(w) are initialized to 0. Then, SC
repeats the following m times: randomly choose a bit and
set it to 1. Very importantly, randomization must use w as
its seed to ensure that the same w always ends up with an
identical h(w).
 A spatial keyword query consists of a query area and a
set of keywords shown in below figure. The answer is a list
of objects ranked according to a combination of their
distance to the query area and the relevance of their text
description to the query keywords. A simple yet popular
variant, which is used in our running example, is the
distance-first spatial keyword query, where objects are
ranked by distance and keywords are applied as a
conjunctive filter to eliminate objects that do not contain
them.
 Furthermore, the m choices are mutually independent,
and may even happen to be the same bit. The concrete
values of l and m affect the space cost and false hit
probability, as will be discussed later. Gives an example to
illustrate the above process, assuming l = 5 and m = 2. For
example, in the bit string h (a) of a, the 3rd and 5th
(counting from left) bits are set to 1. As mentioned earlier,
the bit signature of a set W of words simply ORs the bit
strings of all the members of W. For instance, the signature
of a set {a, b} equals 01101, while that of {b, d} equals
01111.

Fig. 3. Example of bit string computation with l = 5 and m = 2

5. CONCLUSION

 Finally we proposed an efficient a novel search
implementation on spatial databases with simple
implementation than the complex tree constructions like R
trees, in both cache based and non cache based(with geo-
codlings),our algorithms shows an optimal results than the
traditional approaches. Multi dimensional databases with
key word searches. Search for nearest neighbor locations
and keywords. In this paper, we have remedied the
situation by developing an access method called the spatial
inverted index (SI-index). Not only that the SI-index is
fairly space economical, but also it has the ability to
perform keyword-augmented nearest neighbor search in
time that is at the order of dozens of milliseconds.
Furthermore, as the SI-index is based on the conventional
technology of inverted index, it is readily incorporable in a
commercial search engine that applies massive parallelism,
implying its immediate industrial merits.

C. Usha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6468-6471

www.ijcsit.com 6470

REFERENCES
[1] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing

spatialkeyword (SK) queries in geographic information retrieval
(GIR) systems. In Proc. of Scientific and Statistical Database
Management (SSDBM), 2007.

[2] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for
keyword-based search over relational databases. In Proc. Of
International Conference on Data Engineering (ICDE), pages 5–
16,2002.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In Proc.
of International Conference on Data Engineering (ICDE), pages
431–440, 2002.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In Proc. of ACM Management of Data (SIG-
MOD), pages 373–384, 2011.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
An efficient and robust access method for points and rectangles. In
Proc. of ACM Management of Data (SIGMOD), pages 322–331,
1990.

[6] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D.
Wu, and M. L. Yiu. Spatial keyword querying. In ER, pages 16–29,
2012.

[7] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. PVLDB, 3(1):373–384, 2010.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing
in geographic web search engines. In Proc. of ACM Management of
Data (SIGMOD), pages 277–288, 2006.

[9] C. Faloutsos and S. Christodoulakis. Signature files: An access
method for documents and its analytical performance evaluation.
ACM Transactions on Information Systems (TOIS), 2(4):267–288,
1984.

[10] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[11] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter:
an efficient data structure for static support lookup tables. In Proc. of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 30–39, 2004.

[12] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton. Combining
keyword search and forms for ad hoc querying of databases. In Proc.
of ACM Management of Data (SIGMOD), 2009.

[13] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In Proc. of International Conference on Data Engineering
(ICDE), pages 656–665, 2008.

C. Usha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6468-6471

www.ijcsit.com 6471

